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This article considers binary codes with the constraint that the codes restricted to
certain subsets of columns must be contained in particular codes of the shorter lengths.
In particular, we consider codes of even length 2k, and of minimum distance 2 d, where
the code obtained by restricting to the first k positions has even weight and at the same
time the code obtained by restricting to the last k positions also has even weight. If
k = 2n, n odd, and d = 2n, we prove that the code has at most 8n - 4 codewords, and
8n - 4 is attainable for n = 3. This yields 20 binary words of length 12, distance = 6,
where the number of 1’s in the first six and the last six positions is even for every code-
word in the code. This permits a file-transfer protocol control function assignment for
personal computers to be chosen for 20 control functions using essentially just pairs of
upper-case alphabetic ASCII characters where the Hamming distance between the binary
forms of every two different control functions is at least six.

l. Introduction

In Ref. 1, the following problem was suggested: Find codes
of the largest possible size with specified length and minimum
Hamming distance where the shorter codes obtained by pro-
jecting the coordinates corresponding to a given partition of
the coordinates are required to be contained in specified
shorter codes. The examples in this paper require that the pro-
jection onto the first k coordinates must have even weight and
similarity for the last k, where the length is 2k.

The problem arose because simple file-transfer protocols for
personal computers may have to be restricted for interbrand
compatability to just ASCII binary eight-tuples corresponding
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to upper-case alphabetic characters, to avoid control characters
that would be interpreted differently by machines of different
manufacturers. Although the ASCII code is 8 bits, two of the
bits are constant on the set of upper-case letters, and a third
bit is parity. Hence, upper-case ASCII can be thought of as (26
of the 32) six-tuples of even weight. If we want control
functions of two ASCII characters each, ignoring the constant
4 bits of the 16, our binary twelve-tuples are to have even
weight in the first six positions and in the last, and we may
want good distance properties to at least detect errors on noisy
analog voice circuits. For example, we may want distance = 6,
where the maximum distance possible is of course 12. Subject
to the above, we find that a code of 20 codewords exists, and
that this is the largest code possible with the above constraints.



The above result is a special case of the main result of this
paper. Namely, for k an integer 2 1, let:

(1) A2k, d) be the largest size of a binary code of length
2k and minimum distance 2 d;

(2) B(2k, d) be the same as (a) but each codeword has an
even number of 1’s in its first k columns agnd in its last
k columns;

(3) C(2k, d) is the same as (a) but each codeword has an
even number of 1’s.

We see that, in general, for trivial reasons,
Bk, &)< C2k, dy<AQRk, d)

The function A is, of course, well known; the function B is
much more interesting than C and is the main focus of this
paper. (The C-valugs are trivially obtained from the A4-values.)
Above we said that we show B(12, 6) =20. We will also show
that for k = 2n, n odd, B(4n, 2n) < 8n - 4, where B(12, 6) is
the case n = 3. We present evidence that the 81 - 4 bound is
the “‘right” one; if it fails for a certain n it is probably because
certain Hadamard Matrices do not exist. We will also exhibit
exact values or at least the tightest bounds we can for B(2k, d)
and C(2k, d) for specific small values of k and d, and compare
them with the well-known code sizes A(2k, d) obtained from
published tables of error-correcting codes.

Il. Specific Values of A, B, and C

This section presents a table of the 4, B, and C functions
for lengths 2k up to 12 and all relevant d. Various techniques
are used, some relying on later sections of this paper. The
results are illustrated in Table 1. For simplicity, we call the
A-function the unconstrained problem, the C-function the
even problem, and the B-function the even-even problem. The
most interesting even-even problems arise when the length is a
multiple of 4, because then the code can contain antipodal
codewords. References are given unless the result is obvious by
inspection. Unreferenced values of 4 are taken from Ref. 2.
Derivation of the results follow.

(1) B(10, 4) = 32. If B(10, 4) > 32, there would be
three “head” five-tuples with different “tails” in the
code. The tails form a code of length 5, minimum
distance = 4, but 4(5, 4) = 2, not 3. So B(10, 4) < 32.

Here’s how to get 32 even-even codewords of length 10
and mutual distance =>4, proving B(10, 4) = 32.
Consider the length-five linear code of two elements
00000 and 11110, at distance 4. Calling this code G,
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let G,, - - -, G, be the seven other cosets of G, in the
vector space (group) of five-tuples of even weight.
G, is of dimension 4, so there are indeed eight cosets
altogether. Our desired code is the set of 32 =8 X 2 X
2 even-even ten-tuples Oy = (5:'/‘» Bi) 1 Si<8,1<j,
k <2, where §; and §; are in G;. Each G; is, of course,
a distance — 4 code, in its own right.

Now if i; # i,, d(ﬁilj, B,-2 «) = 2, where d is Himming
distance. This is because f;,; # B, x if §; # i, because
the cosets partition the space. And all nonzero dis-
tances are at least 2, being even. S0 d (04, k> %yjyk,)
Z2+2=4ifi #1,.

Finally, if i) = i, d(ogy, o) = 4 if j #jor k' # k,
i.e., if the elements are distinct. For Ok differs from
%G g in either head or tail (or both), and we have

observed that each Gl. is a distance-4 code. This com-
pletes the proof that B(10, 4) = 32.

B(10, 6) = 5. The following five ten-tuples are at
mutual distance 6 or greater:

00000 00000
11110 11000
11101 00110
00101 11011
10010 01111

This shows B(10, 6) = 5. We show B(10, 6) <5 as
follows. By complementing an even number of col-
umns in each half, we can assume the all-0 word is in
the code. If there were three left halves of weight 4,
and so mutual distance 2, then right halves would be at
mutual distance 4, contradicting 4(5, 4) = 2. So there
are at most two four-tuples on the left and two on the
right. If there were six codewords, then there would be
three two-tuples on the left (and on the right). Two of
these heads are at distance 2, because A(5, 4) = 2.
Their tails are at distance 4. But their tails are of weight
4, for the distance of the entire codeword from the 0
codeword is at least 6. Two five-tuples of weight 4 if
different are at distance 2. So we do not have three
two-tuples as heads, and B(10, 6) < 5.

B(12, 4) = 128. There are 32 = 23 distinct even-
weight six-tuples from which to choose our heads
and tails. If one even-weight six-tuple occurred more
than four times as a head, we would have five tail
six-tuples at mutual distance 2> 4, contradicting 4 (6, 4)
=4, S0 B(12,4)<4 X 32=128.

To show B(12, 4) > 128, we construct 128 even-
even codewords of distance >4 analogous to the
construction for B(10, 4) in (1) above. Here G,
a constant-distance 4 linear code, is
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000000
111100
001111
110011

(It is the (3, 2) simplex code with columns doubled.)
Again there are eight cosets altogether, and the even-
even code of length 12 has 8 X 4 X 4 = 128 codewords.
The rest is the same as before. So B(12,4) > 128, and
indeed B(12,4) = 128.

(4) B(12, 8) = 4. We know B(12, 8) <A(12,8)=4. Here
is how to get four even-even twelve-tuples of mutual
distance = 8: Use C(6, 4) = 4, and write each “1” as
“11,” each “0” as “00.” This doubles the length to 12,
doubles the minimum distance to 8, and insures an
even number of ones in any even number of con-
secutive columns starting an odd number of columns
from the left, such as column 1 or column 7 with six
columns.

This completes verification of all the entries in Table 1
except B(12, 6) = 20, which will follow from subsequent
results.

ll. B(4n, 2n) When n Is Even

First note that if # were even, and there happened to exist,
as there usually does, a 2rn X 2n Hadamard Matrix H, we could
proceed as follows. We can make one row of H all I’s, by re-
versing columns. Then every row of H has an even number of
-1%s, either 0 (one row) or n (2n ~ | rows). Let H,, be A/ under
the mapping 1 - 0, -1 - 1; every row of H, has an even
number of 1’s. The 4n X 4rn matrix (or code) given by the
well-known tensor product construction

H H
o _ o o
H4n - (HO HO )

is even-even. Here H,, is the mod-2 complement of A, and is
also even.

The distance between any two codewords of Hgn is found
as follows. If their heads are identical, their tails are comple-
mentary, and the distance is 2a. If they both lie in the top or
bottom half, the distance is # + n = 2n. And if one is in the top
half and one in the bottom half with unequal heads, the dis-
tance is also n + n = 2n. So HY, is an even-even Hadamard
Matrix, or an even-even code of length 4n and distance 2n. We
can now throw in the mod-2 complements of the 4n code-
words as well, to get an even-even code of length 4n with 8n
codewords of minimum distance 2n; each word is of distance
4n from exactly one other word, its mode-2 complement.
This construction shows B(4n, 2n) 2 8n if n is even and a
2n X 2n Hadamard Matrix exists.
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Even without the even-even condition, it is well-known
(and easy) that A(4n, 2n) <8n (Ref. 2, p. 43, Cor. 4, or
Ref. 3. Thm. 1). Thus B(4n, 2n) = 81 when n is even if a
2n X 2n Hadamard Matrix exists. It is much more difficult to
find B(4n, 2n) when n is odd, even if we are willing to assume
that convenient Hadamard Matrices exist. We suspect that our
upper bound of 8n - 4 is really the “‘right” answer, but we
have been able to verify it only when n = 1 (B(4,2)=4)and
n=3(B(12, 6) = 20). This we start to do in the next section.

IV. B(4n, 2n) When n Is Odd

This section has some preliminary vector space results
needed to upper bound B(4n, 2n) when n is odd. The n-odd
case is considerably more difficult than the n-even case. We
will show that B(4n, 2n) <8n - 4 when n is odd. In the
following section, we show that the bound is attained when
n = 3; Table 1 shows that the bound is attained for n = 1.
Specifically, we solve the following problem in the next few
sections:

Problem. Let n be an odd integer, and let a;, - - -, @ be
binary codewords of length 4n. Suppose that each g; has an
even number of 1’s among its first 2n coordinates. Also
suppose d(a, aj) (the Hamming distance between 4; and a;)
is equal to or greater than 2n for all 1 < i j < k. Then
k<8n-4.

Definition: Let £ = {f;, - - -, f,.} be a collection of vectors
in the Euclidean space RS. Then we say that F satisfies:

Condition (1)if f;#0and f;  ; <0, 1 <i#j<k.

Condition (2) if all coordinates of 7, * " - ,fk are *] in some
basis of RS.

Now suppose s is even and F satisfies Condition (2). Fix
some basis such that the coordinates of £}, - - -, f, are ] in
that basis. Then we can define w(f) = the number of 1’s
among the first §/2 coordinates of f;. We say that F satisfies:

Condition (3) if it satisfies Condition (2), s is even and in
some basis of R¥, and w(f;) is even for all i.

Using this terminology, our problem can be restated in the
following way:

Let n be an odd integer. Then if {f;, ---, f,} in R*"
satisfies Conditions (1), (2), and (3), then k < 8n - 4.

To see that this statement is equivalent to the original prob-

lem, replace all zeros by -1’s in the binary representation of a;,
and view the resulting 4n-tuple as a vector f; in R47.



V. Some Relevant Facts From
Linear Algebra

In this section we shall study the properties of the collec-
tions of vectors F = {f;, -~ -, f} from R* satisfying Condi-
tion (1). The underlying space RS will play no role in this
section, since it can always be replaced by span (F). For this
reason we will omit any references to it.

Proposition 1: Let F = {f;, ---, f, } for k > 3 satisfy
Condition (1) and suppose the inner product f,_, * f, <O.
Then rank (f}, - - -, fr_,) <rank (F) - 1.

Proof: Assume the contrary: f, - -, f,_, generate M =
span (F). Let rank (F) = dim M = m. We can assume without
loss of generality that f}, - - -, f,, is a basis of M. We want to
apply the Gram-Schmidt orthogonalization procedure to this
basis. Let

1

e =

! Hr H

—~

14

1,20, e

i=1

p
; - (f,,—z cf)/

forp=2,3,""" ,m

)

sep;fp+1>'”7fk}

We claim that the collection Fp ={e, e,
satisfies Condition (1) forp=1,-- -, m.

We induce on p. For p =1 the claim is obvious. Suppose we
know it for some 1 < p < m. Then to prove it for p + 1 we
have to show that

(D €1 -el.<0fori=l,2,"’,p.
) €pr1 'f;.<0f0r]'=p+2,"',m.

Here (1) is obvious, since e, is orthogonal to ¢; by construc-
tion. To prove (2), observe that

Here

by our induction assumption. Hence, the expression on the
right is nonpositive, as desired. This proves the claim.

Therefore, {e,, -~ -, e,, f,41, ", fi} satisfies Condi-
tion (1). By our assumption, f,_,, f, are in M = span (e;, - - -,
e,,). Write

and
m
fk = E biet
i=1
Then
J—y "¢ SOimpliesa <0, i=1," ", m
fi t¢<0impliesh, <0, i=1, " . m

From this, we see that

m
0> ey *hic = Z ab,=> 0
i=1

a contradiction. Therefore, f}, - - -, fi,_, cannot generate all
of M. This proves Proposition 1.

Proposition 1 has the following well-known Corollary,
which immediately implies the inequality A(4n, 2n) <8n
(Ref. 3, Thm. 1). Here we give a proof based on Proposition 1.

Corollary 1: Let F'= {f, - - -, f;} satisfy Condition (1) of
the previous section. Then k < 2 rank (F).

Proof: We induce on rank (F). When rank (F) = 1 the
corollary is obvious. Now suppose we know it for rank (F)= 1,
2, -+, m(m 2 1), and we want to prove it for rank (F) =
m + 1. We can assume without loss of generality that k > 3.
Suppose & > 2(m + 1). Then clearly f;, - - -, f, cannot be
mutually orthogonal; say f,_;f, <0. Proposition 1 implies
rank (f;, - - -, fr_,) <m. Hence, by our induction as-
sumption, k - 2 <2 rank (F) <2m, ie., k <2(m + 1), a
contradiction.

The same argument also proves the following:
Corollary 2: Let = {f, - - -, f,} satisfy Condition (1), and

suppose k > rank (£). Then F contains a subcollection of k -
rank (#) mutually orthogonal vectors,
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Proposition 2: Let F = {f|, -, fi}, k> (3/2) m = (3/2)
rank (F) satisfy Condition (1). Then there exists G = {g|, - -,
g} with the following properties:

(1) &, . 8., are in F and are mutually orthogonal.

() Eeome1 = 81 E3keam T T &k-3m

(3) &g - & are in F.

(4) G satisfies Condition (1).

Proof: By Corollary 2 we can assume that f;, - - -, f,_,, are

mutually orthogonal. Choose an orthonormal basise;, - - - , e,
in span () such that

Let f; = (a}, e a]’.‘”m, “++, af) in this basis for k - m
+1<j<k.Thenf -f <0,-~~,];--fk_m<0,whichimplies
that forall k- m + 1 <j <k, aj‘,-'~,al’-°“’"<0.

Let v, = (oz]’.‘_mJrl L ,a]’."). Then

k—m
. = . —_ i i .
Vo = Fy Sy Z @, 0, 2f, [, =0

7
i=1

Hence, the vectors {v]-: j=k-m+1, - k} (or those of them
that are nonzero, to be precise) satisfy Condition (1). Here
rank {vj:j=k-m +1, - k}<m-(k-m)=2m - k. Hence,
by Corollary 1, at most 4m - 2k of the vj’s are nonzero. So
(permuting the f’s, if necessary), we have the following
picture:

£ = UIF0.0,0, 0™ 0.+ 0)

f2 = (O’Hfz||’o’70,0”0)

Foy =0, f, 1,0, 0)
Foomsy = (81, oL B0, 0)
= () (k~m)
f3k_4m (ﬁzk_3m’ * 7ﬁ2k__’;zm’03 ’0)
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= e o eem)
Bkcamy = (0 ’ J 1)

(k=m)

2 Y amezie Y

! ..
fe = Oamenie am-2k)

Here, as we showed above, all B; and 'y;: are < 0.

We claim the following. Suppose Bj < 0 for some 1 <i<<
k- m, 1 <j< 2k -3m. Then every other § and every other y
in the ith column must be equal to 0. Indeed, suppose 7; <0
for some s. Then

B¢ 7? >0

0>f-f, = :

k—m
t=1
(the ith term is > 0 and the other terms are all 2 0) and we get
a contradiction. The same argument shows that i = 0 for
SFE].

Now, since each f] has at least one nonzero coordinate, we
can assume that 8} # 0,83 # 0, - -, p2k=3m #0. Then our
claim proves that the collection {f;, -, fi_,.,, - f;. ",
- Lk-ams Fag—amsy> = fib satisties Condition (1). This
proves Proposition 2.

VI. Linear Dependence of (-1, 1) Vectors

In this section we shall study the collections F'= {f;, - - - f,}
of R’ satisfying Condition (2). Some elementary lemmas are in
order.

Lemma 1: Let A = (ai/) be an n X n matrix with all =2l
Then

(1) Ifn=2,det 4 =0, £2.
(2) Ifn=3,det4 =0, 4.
(3) If n=4,det 4 =0, £8, £16.

Proof: If we subtract the first row of 4 from the other
n - 1, then the last n - 1 rows will have entries 0, 2. This
shows that det A4 is divisible by 277!. On the other hand, if we
denote the row vectors of 4 by a;, -~ -, g, then |det A| <
Na, Il -1lall---1la,ll (because |det A| = measure of the
n-parallelopiped spanned by the g) = (+v/n)". Combining these
two properties (277" | det A and |det 4 | < (/n)") we get (1),
(2), and (3). This proves Lemma 1.

We recall the following standard terminology:



Definition: F = {f], s fk} is minimally linearly depen-
dent if F is linearly dependent but any proper subcollection of
F is linearly independent.

Clearly if F is minimally linearly dependent, then k = rank
(£) + 1. We can now prove Lemma 2.

Lemma 2: Suppose F = {f, - ,fk} satisfies Condition (1)
of Section 4 (nonpositive inner product). Then if

(1) Rank (F) = 1 with & = 2, F is minimally linearly
dependent if and only if f, =- 1 ;

(2) Rank (F) = 2, F cannot be minimally linearly de-
pendent;

(3) Rank (F) =3 with k =4, F is minimally linearly depen-
dent if and only if f, =k, f, + k_ fs t+k, f, with k. =
1 fori=2,3,4;

(4) Rank (F) =4 with k =5, F is minimally linearly depen-
dent if and only if k]fl = k2f2 + oo+ kS with &,
chosen from {£1, £2}.

Proof: (1) is obvious. If F satisfies Condition (2) and is
minimally linearly dependent, then we can write f1 as

k

Z af. a#0, alli

=2

In coordinates (using the basis that represents the f’s as
(-1, 1) vectors), if f; = (f1, -+, f9), fi = %1, this equality
becomes the system of linear equations

k
jo— i
dooff=fl =12, s
i=2
Since F'is minimally linearly dependent,

rank (fsi)i=2,~-~,k =k-1

=1

and the a; can be computed (using Cramer’s rule) as ratios of
the determinants of two (k - 1) X (k - 1) matrices whose
entries are fs’, ie., = £1. Since F is minimally linearly depend-
ent, none of the a’s can be 0. Thus Lemma 1 gives (3) and (4).

To prove (2), observe that by Lemma 1, the only possibility
isa , o =%1,ie., f1 = if2 ij;. The entries of £f, tfs have to
be 0, 22, and the entries of f, are +1. This proves (2).

Lemma 3: Let /= {f}, - - -, f,} satisfy conditions (1) and
(2) and be minimally linearly dependent with rank F = m.

Then
(1) Ifm=3,k=4 thenf, +f, +/ +f =0;

2) Ifm=4,k=5thenk1f] +k2f2+~--+k5f5=0
with kl,---,ks chosen from {1, 2}.

Proof: (1) Assume the contrary. Lemma 2 says that k f, +
sz2 + k3f3 + k,f, = 0, where k. k,, ky, k, = £1. We can
assume without loss of generality that kl = k2 =], k4 =-1.
Taking the inner product of both sides with f,, we getf1 . f4
+f2 -f4+k3f3 'f4—j;'f4=0.Butjj1 ']:1=s,whilef1 -f4.
fo © f3 <O.Hence, ks (f3 - f3) -5 =050 |f * f1=5. But
N lh=1pf = \/s. Hence, If, - £, 1 <'s, with equality if and
only if £, = - f,. Since we assumed that {f}, -, f3} is mini-
mally linearly dependent, this is impossible. This proves (1).

(2) Again, assume the contrary. Lemma 2 says that
5

Z kf}; = 0 with k, chosen from {1, £2}

i=1

We can assume without loss of generality that ky, k. k>0,
k, <0.1f k, > 0, then take the inner product of

.
ol
i

li;=0

with f, to get a contradiction.

If k£, < O then we can assume without loss of generality
that |k, | = |k|. Then taking the inner product of both sides
with f;, we get

kst kg (/‘4 ‘f5)>O, ie., |k4|S<|k5| A S
This implies
L1 'f5 =5

and the same argument as in (1) leads to a contradiction.

Corollary 1. Let F = {f] "+, J, ) satisfy Conditions (1) and
(2).

(1) If {f;, f,} are minimally linearly dependent, then

jjisorthogonaltoﬁforlf1,2,/'=3,'--,k.

@) It {f;, -, f,} are minimally linearly dependent,
then f; is orthogonal to Jifori=1,2 ", 4
j=5" k.

(3) If {f;, ---, f;} are minimally linearly dependent,
thenfiisorthogonaltoj;fori= 1,---,5,j=6,-- k.
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Proof: In (2), by Lemma 3, E?:l }:,= 0. Hence, forj= 5,

4 4
o= (Ba) =2

i=1

Each term (f; - f;) is nonpositive. Hence, the above equality
implies that they all must be 0. This proves (2). The same
argument proves (1) and (3) (in (1), f; +/, = 0).

Corollary 2: Let F'= {f,, -~ S of R’ satisfy Conditions
(1) and (2), and let m = rank (£).
(1) f m=3,k=4and /[, [, and f4 are mutually ortho-

gonal, then F cannot be minimally linearly dependent.

(2) If m =4,k =5, and f,, f;, f,, f5 are mutually ortho-
gonal with F mihimally linearly dependent, then f, =
kf,+- -+k5f5 withk, - -, kg =+1/2.

Proof. To prove (1), observe that by Lemma 2, f, = sz2 +
kyf, + k,f, where k,, k, k, =+1.Then

S:f’].f‘]:

2 4 , 4
_ 2 _ _
—Ekillj;ﬂ —Es—3s
i=2 i=2

I

a contradiction. To prove (2), by Lemma 2, we can write
f, as E,-szz ki}:. where the k, are chosen from {£1/2, +1, £2}.
Now

5 5
s =P = YRR = (zkf)s
=2

i=1

Hence, 21.5:2 kl.z= 1, which proves (2).

VII. Maximal Orthogonal Systems
Satisfying Condition (3)

The question of the existence of an orthogonal basis
F of RS satisfying Condition (2) is the question of existence of
an s X s Hadamard Matrix. In this section we shall prove that
when s = 4n, n odd, no basis of R® can satisfy Condition (3),
ie., s odd, weights even. Moreover, any orthogonal system &
satisfying Condition (3) can have at most s - 2 vectors (Propo-
sition 3 below). To prove this result, we need the following
Lemma from Ref. 4, stated here without proof.

Lemma 4: Let f, -+, f,,_, be mutually orthogonal
(1, - 1) vectors in R*?, Then if @ = 1, 2 or 3, there exist «
more (1, - 1) vectors g;, - -+, g, such that {f;, -, f;,_.. & -
-+, &} is an orthogonal basis of R,
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Proposition 3: Let £'= {f, - ’f4n—l} satisfy Conditions
(1), (2), and (3). Then the vectors f,, "~* ", f, _, cannot be
mutually orthogonal.

Proof. Assume the contrary. Then by Lemma 4 there

exists a (-1, 1) vector f,,, such that {f|, -~ -, f,,_,, f3,} isan
orthogonal basis of R*". Let w, = w(f) fori=1,---, 4n. By
our assumption, w; is even fori=1,---,4n - 1. Consider the
vectorc = (1,1, ---, 1@" 0, -+, 0) (in the original basis).

Then ¢ * f;=2(n-w)and ||, {2 = 4n. Hence,

Knowing this, we see that

an n-w, 2
- 2 = i
= llell? =) 3=
i=1
an (n- w.)2
= ——— - lIgIP
=1 4n
4n (l’l - Wi)2
=2 T
i=1
Therefore,
4an
wm? = Z (n- WI.)2
i=1
Now we reduce this equality mod 4. Because # is odd, 2n? =
mod 4. Similarly n - w; is odd fori=1,---,4n- 1. Hence,
4n-1

Z (n—wt.)2E4n—IE—lmod4

i=1
This leaves us with
(n- w4n)2 =3 mod 4

which is impossible, since a®> =0 or 1 mod 4 for any integer a.
This contradiction completes the proof of Proposition 3.

VIll. The Main Theorem

We now have the necessary tools to upper bound B(4n, 2n)
when 7 is odd. We start with another lemma.



Lemma 5. Suppose F = {f;, ---, f;, 5} of RY (n odd)
satisfies Conditions (1), (2), and (3). Then F cannot have a
minimally linearly dependent subset of four elements.

Proof: Suppose fq,_¢. fan_s San-a> and fg,,_5 are minimally
linearly dependent. Denote their span by M. By definition,
dim M = 3. Then by Corollary 1(2) to Lemma3.f, -, f5, 5

are in MPP. Hence, rank {f}, " - -, fgu—7} < 4n~3. By Prop-
osition 2 (with k = 8n - 7, m = 4n - 3), we can assume
(replacing {f,, - -, fg, .} by G if necessary) that f, -,

Jfan-s(=2k-3m) are mutually orthogonal and £, ¢ = -/}, -,
sn—10 = - Jan_s. Then Corollary 1 (1) to Lemma 3 forces
fen-o+ fon—g» fgn-7 10 be in (span (fy. -+, fy, s)PP). That is,

rank (fgn—-9 > f8n—8’ f8n—~7) <2

By Lemma 2 (2), (1) we can thus assume that fg, o =
~fgn—g» Which again forces fgn_7 and fg,_o to be orthogonal.
Therefore, F = {f;, =, Japn-s» Sgn-9» fon-7> Jon_g 1 is an
orthogonal system satisfying Condition (2) and containing
4n - 2 vectors. Hence, by Lemma 4 there exist (-1, 1) vectors
h, and A, such that £ with h, and h, adjoined is an orthgonal
basis of R*". Since fons is orthogonal to fyfori=1,---,
8n - 7, we have that f,_. is in span {/fg,_,, h], h2 }. Then by
Corollary 2(1) to Lemma 3, {fg,_s fon-6- 1y, 1, } cannot be
minimally linearly dependent, i.e., it must have a pair of
opposites.

But f, o = I (i = 1 or 2) is impossible because then
{f;s ' fan-s» Jan-7> Jan-6> Jan—s } would be an orthogonal
system of 4n - 1 (-1, 1) vectors, contradicting Proposition 3.
And fSn—-S = —fan_e contradicts our assumption about minimal
linear dependence of fy, ¢, fou—s: Son—a» and fg, 5. And,
finally, there cannot be any opposites among {fg, ¢ 5, h2}
because these vectors are mutually orthogonal. This contra-
diction proves Lemma 5.

Lemma 6. Suppose F' = {f, -, fg, 3}of R (n odd)
satisfies Conditions (1), (2), and (3). Then F cannot have a
minimally linear dependent subset of 5 elements.

Proof: We use the same strategy. Assume the contrary, say
San-7 Jon—g> * * * » Jgn_3 are minimally linearly dependent. Let
M =span {fg, 5, ", fap_3)} dim (M) = 4. Then f, ",
Jong € MPTP by Corollary 1(3) to Lemma 3. Hence, rank
{fi. **, fap-g )< 4n - 4. Then by Corollary 2 to Proposi-
tion 1 we can assume that f;, - - -, f, _, are mutually ortho-
gonal. Then {f , - - ,f;m_>4, an—7 }is an orthogonal system of
4n - 3 vectors. By Lemma 4 there exist three (-1, 1) vectors
h]’ h2, and h3 such that {f], SRIEI an-—7’ h], h2, ha}is an
orthogonal basis of R¥".

Note that fy, . fg, ¢ Jon-s’ f8n—4j Jan—3 are in span
{fsn—7’ h,, h,, hy }. We claim that there is an orthogonal pair

among {f8n_7, -, Jap_3 ) For proof assume the contrary:
fy +f,<Oforalli+jin {8n-7,---, 8 -3} Denote fy, ¢,
by g fori= 1,~~-,5.Fori=2,3,4,5writegias

3
J
o8 Z Bny
Jj=1

Since «; = (g * g )/4n, it must be negative by our assumption,
for i =2, 3.4, 5. On the other hand, o # - I, because we as-
sume that {g;7=1,2, - 5}is minimally linearly dependent.
Hence. by Corollary 2 to Lemma 3 and Lemma 2 (2), o; =
=172, @ =% 1/2foralli,j.

We can assume without loss of generality that 82 and §3
have the same sign. Then

g, " &,

3 3
1 - 1 :
&7 Z:ﬁéhj °<— 58t E 5]3h].)
0> = Fl !

4n 4n

= (g 883) + (6363 + 283)
- 5+ (e263 4 6383)

R
>ﬁ —_— = =
2+( 3 4) 0

a contradiction. This contradiction proves the claim.

Now (using the same notation as in the proof of the claim)
we can assume that g, and g, are orthogonal. By Lemma 4, we
can complete the orthogonal system {f}, """, f4,,_4,8,,&, }t0
an orthogonal basis by adding two new (-1, 1) vectors #; and
t,. Write

8 = pilgl +pi2g2 +pi3[1 +p?t2
By Corollary 2 to Lemma 3 and Lemma 2, for each 7, there are

only two possibilities for the p/’s:

(1) One of the coefficients pl.l, pl.2, p?, p?is *1 and the other
three are 0;

@ pho Pt

Let us consider each of these two possibilities.

(1) pt.l, pi2 cannot be %1, since we assume that {g,," ',gs}
are minimally linearly dependent. If pl.3 = +[ then
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{f, ,f4n_4, & & gl.}would be an orthogonal sys-
tem of 4n - 1 (-1, 1) vectors, contradicting Proposi-
tion 3. Similarly p? # *1. Thus (1) is impossible for

any 1= 3,4, 5.
(2) In this case pg = pi2 = - 1/2, since
RS _ .
p]l.= i < Ofori =3,4,5,7 =12

We can assume without loss of generality that Bg and Bg have
the same sign. Then

SRt
an 28172

3 4
8, * B3, +53I2)

1 1 4 4
) ('§g1 -5 8& T8y, +64t2)

(%1+%1,+B§5§) + B3B3 = (71¥+%+%)+525§

= >0

S

|-

3
4

This contradiction proves Lemma 6.
Now we at last reach the main theorem of this paper.

Theorem: Suppose F'= {f,. ", f, }of R*" (n 0dd) satis-
fies Conditons (1), (2), and (3). Then k& < 8n - 4. That is,
B(4n, 2n) < 8n - 4 (n odd).

Proof: It is sufficient to prove that F'= {f, """, f8n_3}
cannot satisfy Conditions (1), (2), and (3). Assume the con-
trary. Then by Proposition 2, we can assume (replacing ' by G
if necessary) that f;. - -, f,,, are mutually orthogonal and
fanes == F1 0 fgpgn = - fap-e (here k= 8n -3, m < 4n).
By Corollary 2 (1), the remaining nine vectors (denote them
by g, ", & & = fn_1244) i€ in the orthogonal complement
of span {f], -, fau_e}- Hence, rank {g. . &) <6.50¢,
-, gy cannot be mutually orthogonal, and we can assume

thatg, - g, <O.

By Proposition 1, we can now conclude that rank {g5, -,
&) < 5. Again (permuting the g's if necessary, we can assume
that g5 * g, < 0. Then by Proposition 1. rank {gs, ", g} <
4. By Lemma 6, {gg, -~ . g} cannot be minimally linearly
dependent. By Lemma 5, no subcollection of this collection
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containing four elements can be minimally linearly dependent.
By Lemma 2 (2), no subcollection of three elements can be
minimally linearly dependent.

All this means that {g;, - -, g} contains a pair of oppo-
sites, say gg = - g, Then by Corollary 1 (1) to Lemma 3, g; is
orthogonal to gg for i=1,---,7. Hence, rank {g;, -, g} <

4. Using the same argument as above, we see that the collec-
tion {gy, -, &} must contain a pair of opposites, say g, =
- &;. By Corollary 1 (1) to Lemma 3, g; is orthogonal to g for
i=1,---,5 Hence, rank {g,, -, g} <4

Again Lemmas 3, 6, and 2 (2) imply that this collection,
too, must contain a pair of opposites, say g, = - g. But then
by Corollary 2 (1) to Lemma 3, g, &, and g5 are orthogonal
to g,. Therefore, {f, " *, fane & 84 8o &g} is an ortho-
gonal collection of 4n - 2 (-1, 1) vectors. By Lemma 4, there

exist (-1, 1) vectors A, and A, such that {f, ., fa,_¢ & &>
& 8 1y, 1y} is an orthogonal basis of R4,
Since g is orthogonal to fi, ", f3,_¢, then &4, & &3, &

must all lie in span {g,, h;, h,}. Since g,, h|. and h, are
mutually orthogonal, Corollary 2 (1) to Lemma 3 says that g,
&, h,. and h, cannot be minimally linearly dependent. Then
by Lemma 2 (2), (1), this collection must have a pair of
opposites. Since g,, h,, and k&, are mutually orthogonal, there
are only two possibilities, each of which we rule out:

(1) & = - & Then by Corollary 2 (1) to Lemma 3, every
other vector in the original collection will be ortho-
gonal to g, and g,. Hence, {f}, """ fan-¢> &2+ &2 &
g &3} will be an orthogonal collection of 4n - 1
vectors, contradicting Proposition 3.

(2) g =-h;(i=1o0r2). Then {fi, ", fape & &> &
8 8t will be an orthogonal collection, which again
contradicts Proposition 3. This contradiction at last
proves the Theorem: B(4n, 2n) < 8n - 4 if n is odd.

IX. Determining B(12, 6)

We have left determination of B(12, 6) to the end, because
we need the upper bound B(12, 6) <8 « 3 - 4 = 20 of the
preceding section. Table 2 is a particular code meeting the
upperbound, showing that B(12, 6) = 20.

This example has some additional structure that helped us
find it and that may generalize. Note that 4,, -+, 4, are at
distance 4 from 4 = (000000111111). Also note that 4, =
A,, 1 <k <10. It may be that whenever B(4n, 2n) = 8n - 4
with n odd, the code consists of 4n - 2 orthogonal vectors and
their complements. We can now readily check by inspection
that for k <m, 1 <k <10,



(12 ifm-k=9(Q2<k<10)ork=1,m=20; decomposed into four 9-row by 6-column blocks, there are

dA, 4,) = lg otherwise three 1’s in each column of the two diagonal blocks, each of
. which consists of six-tuples of weight 2, and six 1’s in each

so that the code of Table 2 has minimum distance 6. column of the antidiagonal blocks. One can show in the case n
= 3 that, once we know that there is a pair of codewords at

Some additional structure that helped us find the code is as distance 12, all the additional structure follows. Knowing

follows. If we consider the middle 18 rows of Table 2 as all this, Table 2 was easy to derive.
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2k =10
d A10,d) C(10,d) B(10,d)
Table 1. Largest codes? of even lengths 2k < 12 1 1024 512 256
2 512 512 256
k=2 3 7280 38-40° 32¢
d A(2,d) cQ2,d) BQ2,d) . 38.40 3840 3¢
1 4 2 1 S 12 6* sd
2 P 2 1 6 6 6 59
7 2 2 2
2k =4
d A, d C4,d) 4,d s : : 2
, , B(4,
4,d) ( (4,d) 9 5 5 |
1 16 8 4 10 2 2 1
2 8 4
2k =
3 2 2 2
d A(12.d) C(12,d) B(12.d)
4 2 2 2
1 4096 2048 1024
2k=6
d A6.d) C6.d) B(6.d) 2 2048 2048 1024
: : ’ 3 256 144-160° 1284
1 64 32 16 4 144-160 144-160° 128¢
2 32 32 16 5 32 24° 20f
3 8 4 4 6 24 24¢ 20'
4 4 4 4 7 4 48 44
5 2 2 1 8 4 48 49
6 2 2 1 9 2 2 2
2% =8 10 2 2 2
d A(8.d) C(8,d) B(8.d) 1 2 2 2
12 2 2 2
1 256 128 64
2 128 128 64 A unconstrained,
3 20 16" 16" ¢ even
b b B: even-even.
4 16 16 16
5 4 2 2 8A-Values from Retf. 2, App. A, p. 674. Fig. 1.
bBiorth()g()nul (8, 4) linear codewords for C(8,4) (= C(8, 3)) =B (8, 4)
6 2 2 2 = 16.
7 2 2 2 “From Ref. 2, 4 (9, 5) = 6, and append an even parity bit; likewise
8 ) ) ) 38 < A(9,3) < 40.
Derived in this Section: B (2k, 2r - 1) = B(2k, 2t) because all distances
are even.
“Same reasoning as footnote ¢, where 144 < A(11, 3) < 160, A (11, 5)
=24,

"Derived in Section 9.
fUse B (12,8) = 4.
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Table 2. B(12, 6) = 20

A,2)

A, (1)

[=4
NN+ O 0 N -

R S T T R

LB o B A S Y B I o B - BN
e e e T T

T T TN TN

A20
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